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ABSTRACT 

In this paper we discuss the implementation of an AD1 method for solving the diffusion equa- 

tion on three paralleYvector computers. The computers were chosen so as to encompass a variety 

of architectures. They are: the MPP, an SIMD machine with 16K bit serial processors; FLEW32, 

an MIMD machine with 20 processors; and CRAY/2, an MIMD machine with four vector pmes- 

sm. The Gaussian elimination algorithm is used to solve a set of tridiagonal systems on the 

Fled32 and Clay/;? while the cyclic elimination algorithm is used to solve these systems on the 

MPP. The implementation of the method is discussed in relation to these architectures and meas- 

ures of the performance on each machine are given. Simple performance models are used to 

describe the performance. These models highlight the bottlenecks and limiting factors for this algo- 

rithm on these architectures. Finally conclusions are presented. 
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1. Introduction 

. It appears that future supercomputers will be multiprocessors; in fact some have already 

appeared. There are a number of important, unresolved questions conceming these multiprocessor 

computers. Among these issues are: should they consist of a few, rather powerful processors or 

many, very much less powerful processors, or something in between? Should the new computers 

be SIMD or MIh4D? There is a natural expectation that the multiprocessors with a few, powerful 

processors will have an MIMD architecture and that the others will have SIMD architectures. 

Another issue is the communication among the processors. How the memory is connected to the 

processors and how these processors are connected to each other? Should the interconnection 

scheme be a lattice, a bus, a switch, or something else? It is sterile at this point to argue what is 

the "best" combination of number of processon and power per pmcesor and what is the "best" 

interconnection scheme. Rather, carrying out experiments with exir hng multiprocessor computers 

would appear to be of greater value. 

Despite the fact that the most powerful existing paralleYvector computers can perform at 

peak rates of several hundred MFWPS, the average processing rates of many codes are in the 

range of 20 to 30 W P S  [3]. In part, this can be explained by invoking Amdahl's law, 

1 S =  
1 +f( R-' - 1)' 

where S is the speedup,fis the fraction of the code that can be parallelized/vectorized, and R is the 

paralleYvector to scaler speed ratio. Calculations with this formula show that nearly all the code 

must be parallelized/vectorized in order to achieve a substantial speedup. It is also clear that 

increasing R will only give a very modest improvement for a fixedf. 

In this paper we describe the implementation of an AD1 method for the solution of the 

diffusion equation on three different parallel architectures. These architectures are: the MPP, an 

SIMD machine with 16K serial 1-bit processon; Hex/32, an MIMD machine with 20 processors 

based on 32 bit NSC 32032 microprocessors; and Cray/2, an MIMD machine with four powerful 

vector processors. The method and two algorithms for solving a set of tridiagonal systems are 
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described in section 2. The implementation of the method on these architectures and simple perfor- 

mance models are described in sections 3 through 5. Finally, section 6 contains a comparison of 

performance at the problem solving level and some concluding remarks. 
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2. The numerical method 

Consider the diffusion equation, . 

, 

(2.1) 

to be solved in 0 c t S Tand the square region R: 0 S x  S 1,O S y S  1 with boundary values 

at U(O,y), U(l,y), U(x,O), U(x,l). Consider replacing R by a net whose mesh points are denoted by 

xi = ( i - l w  y, = (i-1)Ay where i = 1,2, . . . , N+1; j = 1,2, . . . , M+1. The numerical method 

used to approximate equation (2.1) is based on an Alternating Direction Implicit (ADI) method for 

solving parabolic equations [l]. This method consists of two half steps to advance the solution one 

full step in time. Let At be the full time step and apply the forward difference operator to equation 

(2.1) for the time derivative, giving 

au - = vu,  
at 

At 
2 w 1 n  - vj = -(($ + g Vi), 'J 

where only one of the space derivatives is evaluated at the advanced time level; this restriction is 

imposed in order to produce a set of tridiagonal equations. Applying the centered second 

difference operator in equations (2.2) and (2.3) for the space derivatives, we get 

Equations (2.4) and (2.5) can be rewritten as: 

a v"'Q I-1 J - (1+2a) c1'2 + a = Fij,  

p W;l - (1+2P) $1 + p p & 1  = G, 

where 
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G. .  ' 4  = -a 

a = At I  AX)', 

P = At I ZAy)', 

- (1-2a) Gin - a u$?, (2.9) 

(2.10) 

(2.1 1) 

for i = 1 ,2 ,  . . . , N+l; j = 1,  2, . . . , M+1. Equation (2.6) represents a set of M+1 independent tri- 

diagonal systems (one for each vertical line of the net) each of size N+1. Similarly, equation (2.7) 

represents a set of N t 1  independent mdiagonal systems (one for each horizontal line of the net) 

each of size M+1. Equation (2.6) is solved for the set {Gln} using the values of U$ while equa- 

tion (2.7) is solved for the set {q'} using the computed values of UCln. In order to solve these 

two sets of equations, the following boundary conditions are incorporated: 

Flj 5 %ln = U(O,yj), F ~ + l j  E = U(l,yj), 

Gi,l 5 U$' = U(xi,O), Gi8+1 3 U$+i = U(xi,l), 

fori  = 1, 2, . . . , M+1, and 

for i = 1,2 ,  . . . , N+1. 

In brief, the AD1 method is implemented in two steps. In the first step, the set {Fii} is com- 

puted, using equation (2.8), followed by solving M-1 tridiagonal systems (excluding the boundary 

systems), using equation (2.6). With P1" known, the set {Gi j }  is computed, using equation (2.9), 

followed by solving N-1 mdiagonal systems (excluding the boundary systems), using equation 

(2.7). These two steps are needed to advance the solution one full time step. 

The main issue in implementing the AD1 method on a parallel computer is choosing an 

efficient algorithm for the solution of mdiagonal systems. The selection of the algorithm depends 

on the amount of hardware parallelism available on the computer, storage requirements, and some 

other factors. Two algorithms are considered here: Gaussian elimination and cyclic elimination. 

Although these algorithms are described in the literature (see [8] for details), they are briefly 

described here for the sake of completeness. 

Consider solving a single aidiagonal system of n equations, 

. 

ai x;l + b, xi + ci xA1 = di, 

for i = 2, 3 ,  . . . , n-1, and the boundary conditions, 

(2.12) 
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x1 = 4, (2.13) 

x,, = d,,. (2.14) 

The Gaussian elimination algorithm, based on an LU decomposition of the tridiagonal matrix, 

has two stages: the forward elimination and the back substitution. In the forward elimination stage 

two auxiliary vectors, w and g, are computed as follows: 

w1 = 0.0, 

wi = ci / (bi - ~i WC~) ,  

81 = dl9 

gi = (di - ai gi-1) / (bi - 

i = 5 3 , .  . . , n-1; 

~i-1).  i = 2, 3, . . . , n-1. 

The values of xi are obtained in the back substitution stage as follows: 

(2.15a) 

(2.15b) 

(2.16a) 

(2.16b) 

x,, = d,,, (2.17a) 

xi = gi - wi x,,, i = n-1, n-2. . . . , 1. (2.17b) 

Gaussian elimination is an inherently serial algorithm because of the recurrence relations in 

both stages of the algorithm. However, if one is faced with solving a set of independent tridiagonal 

systems, then Gaussian elimination will be the best algorithm to use on a parallel computer. This 

means that all systems of the set are solved in parallel. In this case we obtain both the minimum 

number of arithmetic operations and the maximum parallelism. 

The cyclic elimination algorithm, also called odd-even elimination [7] or parallel cyclic 

reduction 181, is a variant of the cyclic reduction algorithm [8] applying the reduction procedure to 

all of the equations and eliminating the back substitution phase of the algorithm. It can be 

described as follows. Assume that n = 2' where t is an integer and 

xi = 0, for i 5 0 and i > n. (2.18) 
Solving equation (2.12) for xi and the corresponding equations for xkl and xi+l, we have: 

(2.19) 

(2.20) 



~ i + l  = (di+l/bi+l) - (ai+l/bi+l) xi - (ci+l/bi+l) ~ i + 2 .  

Substitute for xcl and xi+l in equation (2.19), to get 
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(2.21) 

(2.22) 

a!') = - (ai / bi) ( ~ i - 1  / bki), 

b!') = 1 - (ai / bi) (ci-1 / bj-1) - 

= - (ci 1 bi) (ci+l 1 bi+l), 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

The above process eliminates the odd variables in the even equations and the even variables 

in the odd equations by performing elementary row operations. The resulting system is again mdi- 

agonal of the same form as equation (2.12) but with different coefficients (ai, bi, ci) and forcing 

terms (di). This process can be repeated for r steps (r = log2n) until one set of equations remains. 

These equations are 

/ b*l) ( ~ i  / bi), 

4') = (di / bi) - (ai / bi) (dcl / bi-1) - (ci / bi) (di+l / bi+l). 

uf)  xi-2r + by) xi + cy) = 4). i = 2,3,. . . , n-1. (2.27) 

The terms xb2, and xi+r of equation (2.27) are really zero because they refer to values outside 

the range 1 I i I n and by equation (2.18) are zero. Thus equation (2.27) becomes 

xi = d? / b?, for i = 2, 3, . . . , n-1. (2.28) 

The cyclic elimination procedure therefore requires the computation of new sets of 

coefficients and forcing terms, for levels k = 1, 2, . . . , r, from 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

. 
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(2.33) 

followed by computing the values of xi, us& equation (2.28). Note that far k = 1 equations (2.29) 

to (2.32) are equivalent to equations (2.23) to (2.26) with 4’) = ai, Go) = bi, c!’) = ci, and 4) = di. 

The AD1 procedure to solve equation (2.1) can be applied for any set of boundary and initial 

conditions. A test problem is developed by setting U to zero everywhere at r = 0 on the interior 

and 

U(0,y) = 1 + 0.2501 - 3 ~ 3 ,  

U(X,O) = 1 + 0.25(3x’ - 6), 
U(1,y) = 1 + 0.25(2~ - 3 9  - 3), 

U(41) = 1 + 0.25(31;L - 5x - 2), 

for all time. The steady state solution to this problem is, 

1 u =  1+- [3 (1 ;L-y ’ )+q-6+y] .  4 
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3. Implementation on the MPP 

The Massively Parallel Processor (MPP) is a large-scale SJMD processor developed by Goo- 

dyear Aerospace Co. for NASA Goddard Space Flight Center [2]. The Mpp is a backend proces- 

sor for a VAX-11/780 host, which supports its program development and VO needs. 

The MPP has three major units: the Array Unit (ARU), Array Control Unit (ACU), and stag- 

ing memory. The ARU is a square array of 128 x 128 bit-serial Processing Elements (PE’s). Each 

PE has a local 1024 bit random access memory and is connected to its four nearest neighbors with 

programmable edge connections. Arithmetic in each PE is performed in bit serial fashion using a 

serial-by-bit adder. The ACU supervises the PE array processing, performs scaler arithmetic, and 

shifts data across the PE array. The staging memory is a large scale data buffer that stores, per- 

mutes, and transfers data between external devices and the array. The MPP has a cycle time of 

100 nsec. 

The MPP’s high level language is MPP Pascal [9]. It is a machine-dependent language 

which has evolved directly from the language Parallel Pascal defined by Reeves [lo]. Parallel Pas- 

cal is an extended version of serial Pascal with a convenient syntax for specifying array operations. 

These extensions provide a parallel array data type for variables to be stored in the array memory 

and operations on these parallel arrays. One of these operations that is used extensively in this 

work is shifting. The shift function shifts data by the amount specified for each dimension and 

shifts zeros in at the edges of the array. It has the form shifi (a, AI, A2) where u is the parallel 

array to be shifted and kl and kz specify the amount of shift in the first and second dimensions of 

U. 

The AD1 method, described in section 2, was implemented on the MPP for a 128 x 128 mesh 

point problem. In each processor, data corresponding to one mesh point is stored The main pro- 

gram as well as the AD1 procedure were written in MPP Pascal. The main program, run on the 

VAX, handles input and output, initialization of the computational domain, and calling the AD1 

procedure. The AD1 procedure, which was executed entirely on the array, computes the 
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coefficients, forcing terms, and solves two sets of 128 hidiagonal systems. The hidiagonal systems 

are solved by the cyclic elimination algorithm, described in section 2, for all rows and all columns. 

This is done in parallel on the array with a hidiagonal system of 128 equations being solved on 

each row or column. In this case the vectors xi, ai, bi, ci, di of equation (2.12) become the matrices 

xij, ay bij, cij. dij. After solving each set of the hidiagonal systems, all points of the domain are 

updated except the boundary points. This is implemented by masking out the boundary columns 

(or the boundary rows) of the array. 

The AD1 procedure is reasonably efficient and requires only 5 parallel arrays of floating point 

numbers. The procedure contains mostly matrix operations with a few scaler operations (for com- 

puting the coefficients) and has no vector operations. However, the cyclic elimination algorithm 

has some hidden defects. For each level of the elimination process, a set of data is shifted off the 

array and an equal set of zeros is shifted onto the array. Since all of the processors are executing 

the same instruction at every cycle, some of these processors may not be doing useful work; here 

they are either multiplying by zero or adding a zero. This is a problem with many algorithms on 

SIMD machines. 

Table I contains the execution time and the processing rate of the AD1 procedure for the 

128 x 128 problem. The processing rate is determined by counting only the arithmetic operations 

(addition, multiplication, and division). Data transfer operations, vital as they are in this work, are 

not counted as floating point operations. However, all the arithmetic operations including those 

operations which do not contribute to the solution are counted. 

In order to develop a model for the cost of implementing the AD1 method on the MPP, the 

arithmetic operations as well as the data rransfer operations of the method are counted and the cost 

of each of these operations on the MPP is measured Table 11 contains the operation counts for one 

pass of the AD1 method using the cyclic elimination algorithm. These operations are also required 

for the second pass of the method and the total number of operations required for both passes will 

be twice the number that is given in Table 11. Table 111 contains the measured values of the ele- 
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mentary operations on the MPP. These values were obtained by measuring the execution time of 

each operation using a loop of length 1OOO. 

The execution time of the A D 1  method on the MF'P, T, is computed as follows: 

Toow : Computation cost, 

Tcm : Communication cost, 

re : Machine cycle time, 

N ,  : Number of additions, 

N,,, : Number of multiplications, 

Nd : Number of divisions, 

N,,, : Number of shift operations, 

N,, : Number of steps involved in all shift operations, 

Ca : Cost of each add operation, 

C,,, : Cost of each multiply operation, 

Cd : Cost of each divide operation, 

c,h : Startup cost of shift operation, 

C,, : Cost of shifting one step within shift operation. 

The values of N, N,,,, Nd, N,h, and N,,  are obtained from Table I1 while the values of 

C,, C,,,, c d ,  C,,,, and C,, are obtained from Table 111. Table I V  contains the estimated times based 

on this model. The computation cost contributes about 75% of the total cost and the communica- 

tion cost contributes about 25% of the total cost. The scaler operations have very little impact on 
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the performance of the method since they are inexpensive and may overlap with the a m y  opera- 

tions. It is also found that the cost of solving the tridiagonal systems represents more than 95% of 

the total cost of the method. 

The Mpp has two sets of primitives for implementing the elementary arithmetic operations; 

IBM and VAX format primitives. The IBM format primitives are more efficient than the VAX for- 

mat primitives but were unavailable for MPP Pascal programs at the time this research was con- 

ducted. The peak performance rates of the arithmetic operations are computed based on IBM for- 

mat primitives. These rates for operations involving 32 bit 128 x 128 floating point matrices are 

430 MFLOPS for addition, 216 MFLOPS for multiplication, and 165 MFLOPS for division. If we 

use these peak rates and the operation counts from Table 11, the maximum possible rate of the AD1 

method will be 236 W P S .  Therefore, the measured processing rate is about 57% of the max- 

imum possible rate. The peak performance rate is not achieved because of the data transfer costs 

and the inefficiency of the VAX format primitives. Previous work [SI showed that the efficiency of 

these primitives can have a major impact on the performance of the machine. 
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4. Implementation on the Flex132 

The Fled32 is an MIMD shared memory multiprocessor based on 32 bit National Semicon- 

ductor 32032 processor 141. The results presented here were obtained using the 20 processor 

machine that is now installed at NASA Langley Research Center. 

The machine has ten local buses; each connects two processors. These local buses are con- 

nected together and to the common memory by a common bus. The 2.25 Mbytes of the common 

memory is accessible to all processors. Each of processors 1, 2, and 3 contains 4 Mbytes of local 

memory. All other processors contain 1 Mbyte each. Each processor has a cycle time of 100 nsec. 

The UNIX operating system is resident in processors 1 and 2. These processors are also used 

for software development and for loading and booting the other processors. Processors 3 through 

20 run the Multicomputing Multitasking Operating System and are available for parallel processing. 

The Flex/32 system software has a special concurrent version of Fortran 77. Concurrent For- 

tran comprises the standard Fortran 77 language and extensions that support concurrent processing. 

Among the constructs available for implementing parallel programs are: "shared", to identify vari- 

ables that are shared between processors; "process", to define and start the execution of a process 

on a specified processor; "lock, to lock a shared variable if it is not locked by any other process; 

and "unlock", to release a locked variable. 

The AD1 method, described in section 2, was implemented on the Fled32 using p processors 

with p = 1, 2, 4, 8, and 16 and for problems of sizes n x n mesh points with n = 64, 128, and 256. 

The main program as well as the AD1 subroutine were written in Concurrent Fortran. 

In order to implement the method in parallel, the domain is decomposed first vertically into n 

by n I p strips, for the first pass of the method, and then horizontally into n I p by n strips, for the 

second pass of the method. In the first pass, a set of n / p mdiagonal systems (each of n equations) 

corresponding to the vertical lines of the net are solved for each strip using the Gaussian elimina- 

tion algorithm, described in section 2. In the second pass, likewise, a set of n / p tridiagonal sys- 

tems (each of n equations) corresponding to the horizontal lines of the net are solved for each strip 
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using the same algorithm. In our implementation each strip is given to a process. In addition to 

initialization of the domain and input and output operations, the main program creates and starts 

the execution of the processes on specified processors with each process assigned to a separate pro- 

cessor. The processes are spawned only once at the beginning of the program and are used for 

both passes of the method. The data corresponding to the domain is stored in the common 

memory. Also, the values of the boundary points, computed in the main program, are stored in the 

common memory. The forcing terms and the temporary matrices wi, and gii, equations (2.15) and 

(2.16), for each strip are computed and stored in the local memory of each processor. 

The AD1 method for each strip was implemented by: computing the coefficients and forcing 

terms of the tridiagonal systems and solving these systems for all columns first and then for all 

rows of that strip. Upon completing a pass, each process signals to the other processes by incre- 

menting a counter. All of the processes will wait until each of them has finished the current pass. 

A lock is assigned to the counter to ensure this sequence of the events. 

The measured execution times and the processing rates for problems of sizes 

64 x 64, 128 x 128, and 256 x 256 are listed in Table V. These results were obtained using a 

timer with a 20 msec resolution. The speedup and efficiency as functions of the number of proces- 

sors of these problems are listed in Table VI. The efficiency of the method ranges from 35% for 

the 64 x 64 problem using 16 processors, to 95%, for the 256 x 256 problem using two processors. 

The execution time of the AD1 method on p processors of the Fled32, Tp can be modeled as 

follows: 

Tp = Tcmp + To, 

where TCw is the computation time and T o ,  is the overhead time. Since the load is distributed 

evenly between the processors with no extra computations, the computation time on p processors 

can be computed by 
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where TI is the computation time using a single processor. 

The overhead time is 

Tsp is the spawning time of p processors, 

T,, is the total common memory access time, 

Tqn is the total synchronization time. 

These times can be estimated as follows: 

p the number of processors, 

n the number of mesh points in each dimension, 

tsp the time to spawn one process; a reasonable value is 13 msec, 

r,, the time to access an element of a matrix in the common memory; a reasonable value is 4 

clsec, 

ti& the time to lock and unlock a variable in the common memory; a reasonable value is 47 

Pet, 

k,, the number of times each ship is referenced (kc- = a), 

kick the number of times the c o m n  variable is locked and unlocked for each process (kkk = 2). 

Table VI1 contains the estimated values of the computation time and the overhead times of 

the AD1 method. The synchronization time is insignificant because the routines that provide the 

locking mechanism are very efficient. The spawning time dominates the overhead time for large 



15 

number of processm. This resulted in the degradation on the performance of the method for large 

number of processors. However, the overhead time is dominated by the common memory access 

time for small number of processors. The total estimated times are less than the measured times 

(by less than 3%) because of the exclusion of the impact of the memory contention in the analysis. 

This contention results from having more than one processor frying to access the common memory 

at the same time. A memory contention factor which is a function of p may be included in Tern. 

This factor has estimated values ranged from 1.1 for 2 processors to 3.5 for 16 processors. Finally, 

it was realized that the common memory access operations may overlap with the spawning opera- 

tions during the first pass of the method. 
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5. Implementation on the Cray/2 

The Cray/2 is an MIMD supercomouter with four Central Processing Units (CPU), a fore- 

ground processor which controls YO and a central memory. The central memory has 256 million 

64 bit words organized in four quadrants of 32 banks each. Each CPU has access to one quadrant 

during each clock cycle. Each CPU has an internal structure very similar to Crayll with the addi- 

tion of 16K words of local memory available for storage of vector and scaler data. The clock cycle 

is 4.1 nsec. 

The AD1 method, described in section 2, was implemented on one pmessor of the Crayl2 for 

domains of sizes ranging from 64 x 64 to 1024 x 1024 mesh points. The code, in each case, was 

written and run through the CrayL! vectorizing Fortran compiler, cFT/2 [6]. Each set of the ai&- 

agonal systems are solved by the Gaussian elimination algorithm, described in section 2, for all sys- 

tems of the set in parallel. This means that each element of wi (equations (2.15)) is computed for 

all the tridiagonal systems before moving to the next element. This process is repeated in comput- 

ing the elements of gi (equations (2.16)) and xi (equations (2.17)). The implementation requires 

that the vectors wi, gi, xi be changed to the matrices wii, gij,  xii. When these are done, all state- 

ments of the code vectorize fully and the recursion problem of the algorithm is eliminated. 

The AD1 method requires that the data is first referenced by vertical lines and then by hor- 

izontal lines. The CFU2 compiler stores arrays by incrementing the leftmost index first (column 

major order). This means that referencing the data by vertical lines causes no problems because 

the increment between data elements is unity. However, in referencing the data by horizontal lines 

the increment between the elements will be equal to the number of variables in each column. In 

OUT implementation, this number ranges between 64 and 1024. This could cause a major problem 

on the Cray/2. The machine has 128 memory banks and consecutive elements of an may are 

stored in consecutive banks. Each bank has a cycle time of 57 clock periods. For a memory stride 

of 128, for example, words are drawn from the same bank and each word must wait the entire 57 

clock periods to be moved from main memory, even if there is no competition for resources from 
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other processors. As a result, strides that are divisible by 128 ur any large power of two result in 

major performance reductions. This problem is overcome by storing the data as though it had a 

column length one greater than its actual length. Thus for a stride of 129 data elements are stored 

in sequential banks with a stride of one (stride of 129 mod 128 banks = 1). 

The number of memory access operations can be reduced by using the local memory when- 

ever that is possible. Once an array is stored in the local memory, none of its elements can be 

changed; all the elements are treated the same. The forcing terms Fij and Gij, equations (2.8) and 

(2.9), are stored in the local memory. 

Table WI contains the execution time and the processing rate of the AD1 method when the 

Qmain size is varied from 64 x 64 through 1024 x 1W mesh points. There is up to 20% offset 

on the results depending on the memory traffic and the number of the active processes on the sys- 

tem. The processing rate is computed by counting the additions, multiplications, and divisions 

only. Division is counted as a single arithmetic operation. The number of arithmetic operations 

for one pass of the AD1 method, using the Gaussian elimination algorithm for solving the tridiago- 

nal systems, are listed in Table IX. The total number of each operation will be twice the number 

that is given in Table IX. 

The time required to perform floating point operations, Tf, and memory access operations, T,,,, 

on vectors of length L ,  can be modeled as follows: 

where 

bl : Next integer greater than or equal to x, 

N ,  : Number of vectors, 
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L, : Length of a floating point functional unit = 23 CPs, 

L,,, : Length of data path between main memory and the registers = 56 CPs, 

CP : Clock Perid = 4.1 nsec. 

Table X contains the results of applying equations (5.1) and (5.2) for the AD1 method. The 

number of floating point operations is obtained from Table IX while the number of main memory 

access operations is 12 for each pass of the method. The multiplication time includes the time 

required for division where it is assumed that each division takes three times the multiplication 

time. The cost of scaler operations are not included in the model. The memory access time 

represents about 47% of the total estimated time. The estimated time for memory access does not 

take into account the competition for memory banks from other processors which causes a lower 

data transfer rate. The total estimated time exceeds the measured time for large domains. This is 

because for large problems more overlapping between different operations is expected and the 

impact of scaler operations is reduced. For these reasons, the performance rate of the method, 

Table VIII, increases for large problems. 

Because the AD1 method has more multiplications (including divisions) than additions, the 

time to implement the method can be considered as a summation of two portions; a portion with 

one operational pipeline and a portion with two pipelines. By using Table IX and assuming that 

the peak performance rate of one pipeline is 244 MFLOPS, ignoring the vector startup times, the 

maximum processing rate of the AD1 method will be 357 MFLOPS. Therefore!, the measured pro- 

cessing rate for the 128 x 128 problem is about 20% of the peak performance rate. If the startup 

time of the floating point units is included, the measured processing rate for the 128 x 128 problem 

will be about 28% of the peak processing rate of 262 MFLOPS. The major problems are accessing 

the main memory and the scaler portion of the code. 
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6. Comparisons and Concluding Remarks 

The processing rate and execution time (Tables I, V, and WI) are used to compare the per- 

formance of the AD1 method on the three parallel architectures. Since two different algorithms are 

used to solve the hidiagonal systems, the number of arithmetic operations involved in these algo- 

rithms should be taken into consideration. The total number of arithmetic operations required per 

each interior point of the 128 x 128 domain for one pass of the method is 97 using the cyclic elim- 

ination algorithm (Table II) while it is 15 for the Gaussian elimination algorithm (Table IX). This 

is a factor of about 6.5 between these algorithms which makes cyclic elimination the less efficient 

algorithm. This explains why for the 128 x 128 problem the Cray/2 outperformed the MPP (by a 

factor of about 3.7) with respect to the execution time while the MPP outperformed the Crayn (by 

a factor of about 1.8) with respect to the processing rate. 

The relative performance rate of the method is another way of measuring the performance. 

This is a measure of how well the algorithm has been mapped onto the architecture including the 

impact of the software used in the implementation. These relative performance rates for the 

128 x 128 problem are 57% on the MPP, 66% on 16 processors of the Flex132, and 28% on the 

Crayn. On the MPP, the main problems are the communication cost of the algorithm and the 

inefficiency of the primitives used in MPP Pascal. On the Flex132, the main problems are the 

spawning cost and the common memory access cost. On the Crayn, the main problems are access- 

ing the main memory and the scaler portion of the code. 

Another measure of performance is the number of machine cycles required to solve the prob- 

lem. This measure reduces the impact of technology on the performance of the machine. For the 

128 x 128 problem, the method requires about 237 million cycles on the MPR 1579 million cycles 

on the Cray/2; and 7400 million cycles on the Flex132. 

The performance model on the MPP was fairly accurate on predicting the execution times of 

the method based on the measured values of the elementary operations. The performance model on 

the Flex132 showed that the spawning cost and the common memory access cost dominated the 
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overhead cost; although it was hard to estimate the impact of memory accesses since these opera- 

tions overlap with other operations. The performance model on the Cray/2 showed the costs of 

individual operations and their impacts on the overall performance of the machine. 

In summary we have found that the AD1 method can be mapped onto different parallel archi- 

tectures. Two different algorithms were used to solve the hidiagonal systems and these algorithms 

were chosen to exploit the parallelism available on the architectures. The machine’s hardware was 

the main consideration in selecting the algorithm while the software influenced the performance. 
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Problem size (mesh points) Execution time (msec) 
128 x 128 23.698 

Processing rate (MFLOPS) 
134 

MPP. 

Add Multiply Divide 
824 877 1130 

Operation 

One step shift k step shift 
166 134 + 32 k 

1. Compute Fij, 

eq. (2.8) 
2. Compute Aij, Cij, Dij,  

eqs. (2.33) 
3. Compute u$), 
eq. (2.29) 

4. Compute b&), 
eq. (2.30) 

5. Compute cf;), 
eq. (2.31) 

6. Compute 4:). 
eq. (2.32) 

7. Compute xi j ,  
eq. (2.28) 

Computation time 
17.809 

Total operations 
Total omrations for r = 7 

Communication time Total estimated time Measured time 
6.069 23.878 23.698 

Add 
2 

- 

- 

2 r  

- 

2 r  

- 

4 r + 2  
30 

Multiply 
3 

r 

2 r  

r 

2 r  

6 r + 3  
45 

Divide 

3 r + l  
22 

Shift 
2 

- 

r 

2 r  

r 

2 r  

- 

6 r + 2  
44 

Steps shifted 
2 

2' - 1 

2 (2' - 1) 

2'- 1 

2 (2' - 1) 

6 (2' - 1) + 2 
764 

Table 11. Operation counts for one pass of the AD1 method using the cyclic 
elimination algorithm for solving the tridiagonal systems, where 
i =  1 ,2 , .  . . , n , j =  1 ,2 , .  . . ,n ,and  r=log2n. 

Table 111. Measured execution times (in machine cycles) of the elementary 
operations on the MPP. 

~ 

Table IV. Estimated and measured times (in milliseconds) of the AD1 method 
on the MPP. 
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Problem size 

6 4 x 6 4  
128 x 128 
256 x 256 

(mesh points) 
Execution time Processing rate 

(msec) mops) 
340 0.36 
740 0.66 

2320 0.85 

I Number of I 64 x 64 points I 128 x 128 points 
efficiency 

1 .Ooo 
0.913 
0.848 
0.660 
0.349 

processors 

16 

speedup efficiency 
1 .Ooo 1 .Ooo 
1.874 0.937 
3.660 0.915 
6.807 0.851 

10.486 0.655 
Table VI. 

speedup 
1 .Ooo 
1.900 
3.722 
7.271 

13.414 

speedup 
1 .Ooo 
1.827 
3.393 
5.278 
5.588 

efficiency 
1 .Ooo 
0.950 
0.93 1 
0.909 
0.838 

No. of 
procs. 

Computation Spawning Memory 
time time time 

1 
2 
4 
8 

16 

- - - 
950 26 49 
475 52 25 
238 104 12 
119 208 6 

I 1;;; 1 5 1 786 
393 

3890 104 197 
16 1945 208 98 

Table VII. Estimated and measured times (in mi 

- 
1025 
552 
354 
333 

1900 
1040 
560 
360 
340 

time 

1 
2 3880 26 
4 1940 52 
8 970 104 

16 485 208 

- - - 
197 
98 
49 
25 

- 
4103 
2090 
1123 
718 

7760 
4140 
2120 
1140 
740 

- 
16372 

~ 8225 
I 4191 

225 1 

31 120 
16380 
8360 
4280 
2320 
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Addition Multiplication 
time time 
0.259 0.562 
1.066 2.3 10 
4.324 9.368 

17.414 37.730 
69.893 151.430 

Problem size 
(mesh points) 

Total estimated Measured 
time time 
1.541 1.684 
6.327 6.474 

25.639 24.270 
103.220 94.037 
4 14.206 364.248 

64x64  
128 x 128 
256 x 256 
512 x 512 

1024 x 1024 

Execution time 
(msec) 

1.684 
6.474 

24.270 
94.037 

364.248 

Processing rate 
(MFLOPS) 

69 
74 
80 
83 
86 

Table VIII. Execution times and processing rates for the AD1 method on one 
processor of the Cray/2. 

I Operation 
1. Compute Fij,  
eq. (2.8) 

2. Compute wij, 
eqs. (2.15) 

3. Compute gi j ,  
eqs. (2.16) 

4. Compute xi j ,  

Table IX. Operation counts for ( 

sian elimination algorithm for sol 

Problem size 
(mesh points) 

6 4 x 6 4  
128 x ,128 
256 x 256 
512 x 512 

1024 x 1024 

Memory 
access time 

0.720 
2.95 1 

1 1.947 
~ 48.076 
i 192.883 

Add Multiply * 
6 7 

le pass of the AD1 
ring the tridiagonal 

Divide 
- 

1 

1 

- 

2 

method 
,ystems. 

sing the Gaus- 

Table X. Estimated and measured execution times (in milliseconds) of the 
method on one processor of the Cray/2. 
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